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LIST COLOURING

Imagine adversaries to colouring

® that issue arbitrary lists of allowable colours per vertex

® but must give at least ¢ per list

What is least £ for which colouring is always possible? (Necessarily £ > x)
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Imagine adversaries to colouring

® that issue arbitrary lists of allowable colours per vertex

® but must give at least ¢ per list

What is least £ for which colouring is always possible? (Necessarily £ > x)

Called list chromatic number or choice number or choosability ch
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ch is not bounded by any function of x

Theorem (Erdés, Rubin, Taylor 1980)

ch(K4,q4) ~ log, d (and ch(Kg41) =d +1)

Rather, more closely related to density

Theorem (Alon 2000, cf. Saxton & Thomason 2015)
ch(G) = log, § for any G of minimum degree &

Still poorly understood

Conjecture (Alon & Krivelevich 1998)
ch(G) < log, A for any bipartite G of maximum degree A
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What if lists connected by edge are all almost disjoint, so 1 common colour?

Call the corresponding least ¢ separation choosability chsep

Theorem (Kratochvil, Tuza, Voigt 1998)
Chsep(Kd+1) ~ \/3

Theorem (Firedi, Kostochka, Kumbhat 2014)
Cheep(Ka,d) ~ log, d

Theorem (Esperet, Kang, Thomassé 2019)
chsep(G) = Q(log ) for any bipartite G of minimum degree §

Question: Does cheep grow in 67

Problem: Almost-disjointness of lists is not monotone under edge-addition!
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EFE RAMSEY-TYPE QUESTION/SOLUTION? i

Theorem (Kratochvil, Tuza, Voigt 1998)
Chsep(Kd+1) ~ \/a

Theorem (Esperet, Kang, Thomassé 2019)
chsep(G) = Q(log ) for any bipartite G of minimum degree §

Question: Does chgep grow in 67

Related question: Does every graph of high minimum degree contain either

® a large clique or

® a large minimum degree bipartite induced subgraph?
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BIPARTITE INDUCED DENSITY

Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree § has a bipartite induced subgraph
of minimum degree (log d)

® Without triangle-free, trivially false due to cliques
® Without induced, trivially true with d/2 rather than Clog d
® |If true, it is sharp up to constant factor

® 2 rather than Q(logd) corresponds to presence of an even hole
(Radovanovi¢ and Vuskovi¢ '13)
® True with “semi-bipartite” instead of bipartite

® True with Q(Iog’igé) (Kwan, Letzter, Sudakov, Tran 2018+)
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“BETWEEN” INDEPENDENCE AND COLOURING

Suppose minimum degree § and there is a proper k-colouring

Each of ~ ? pairs of colour classes induces a bipartite graph
> —5 edges are distributed across these

By pigeonhole, one has > "2 edges
So it has minimum degree Q(2) if the colouring is balanced. ..

Theorem (Esperet, Kang, Thomassé 2019)

Any graph with fractional chromatic number at most k and minimum degree §
has a bipartite induced subgraph of minimum degree at least 2%

Conjecture (Harris 2019)

Any triangle-free graph with degeneracy 6" has fractional chromatic number

O(jg5)
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® that issue arbitrary matchings specifying pairwise conflicts of colours
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CORRESPONDENCE COLOURING

Imagine adversaries to colouring

® that issue arbitrary matchings specifying pairwise conflicts of colours

® between lists of size £ on vertices joined by an edge

What is least £ for which colouring is always possible? (Necessarily ¢ > ch)

Called correspondence chromatic number or DP-chromatic number xpp
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Or rather, it is much more closely linked with density

Theorem (Bernshteyn 2016, cf. Krdl', Pangrac, Voss 2005)

xor(G) 2 ﬁ for any G of minimum degree §

Theorem (Bernshteyn 2019, cf. Molloy 2019)

xor(G) < é for any triangle-free G of maximum degree A

NB: This settles correspondence version of conjecture of Alon & Krivelevich
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What if lists connected by edge are all almost disjoint, so 1 conflict?
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A generalisation to multigraphs is natural (also for “adaptable choosability”)
Call the corresponding least ¢ least conflict choosability chppy

Theorem (Dvorak, Esperet, Kang, Ozeki 2018+)

chop1(G) < 2VA for any (multigraph) G of maximum degree A

NB: chpp1(G) = V/A for a 2-vertex G of multiplicity A (1)

Theorem (Dvorak, Esperet, Kang, Ozeki 2018+)

chop1(G) Z 4/ |on for any G of minimum degree ¢

An analogue of Heawood's Formula (roughly of form x = O(v/g + 1))

Theorem (Dvoték, Esperet, Kang, Ozeki 2018+)

chppi(G) = O((g + 1)/*log(g + 2)) for any simple G embeddable on a
surface of Euler genus g
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Theorem (Dvoték, Esperet, Kang, Ozeki 2018+)
chop1(G) < 2VA for any (multigraph) G of maximum degree A

NB: chpp1(G) > VA for a 2-vertex G of multiplicity A (1)

*Observed in ongoing work with Kelly
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Theorem (Dvoték, Esperet, Kang, Ozeki 2018+)
chop1(G) < 2VA for any (multigraph) G of maximum degree A

NB: chppi(G) 2 VA for a 2-vertex G of multiplicity A (1)
Theorem Redux (Dvotak, Esperet, Kang, Ozeki 2018+)

Given simple H and a vertex partition L : [n] — (V(eH)) satisfying
® ¢ Xici(v deg(i) < D for every v € [n]
® (> 4D,

there is an independent set that is transversal to the partition L

*Observed in ongoing work with Kelly
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Theorem (Dvoték, Esperet, Kang, Ozeki 2018+)
chpp1(G) < 2V/A for any (multigraph) G of maximum degree A

NB: chppi(G) 2 VA for a 2-vertex G of multiplicity A (1)
Theorem Redux (Dvo¥ak, Esperet, Kang, Ozeki 2018+)

V(H)

Given simple H and a vertex partition L : [n] — ('

® ¢ Xici(v deg(i) < D for every v € [n]
° 024D,

there is an independent set that is transversal to the partition L

) satisfying

So closely related to Haxell 2001 (with instead deg(/) < D and 2D) and

Theorem (Bollobas, Erdés, Szemerédi 1975, cf. Szabé & Tardos 2006)
chpp1(G) 2 V2A for some multigraph G of maximum degree A

and also to List Colouring Constants. ..

*Observed in ongoing work with Kelly
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Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree § has a bipartite induced subgraph
of minimum degree Q(log §)

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot
2018+)
X(G) < +/ 2% for any triangle-free graph G on n vertices

log n

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot
2018+)
ch(G) = O(,/=) for any triangle-free graph G on n vertices

log n




