FAILURES TO WEAKEN LIST COLOURING THROUGH PRESCRIBED SEPARATION

Ross J. Kang

Radboud University Nijmegen

STRUCO Workshop Paris, 5/2019

LIST COLOURING

Imagine adversaries to colouring

- that issue arbitrary lists of allowable colours per vertex
- but must give at least ℓ per list

What is least ℓ for which colouring is always possible? (Necessarily $\ell \geq \chi$)

LIST COLOURING

Imagine adversaries to colouring

- that issue arbitrary lists of allowable colours per vertex
- but must give at least ℓ per list

What is least ℓ for which colouring is always possible? (Necessarily $\ell \geq \chi$)

Called list chromatic number or choice number or choosability ch

LIST MAKES IT "HARDER"

ch is not bounded by any function of $\boldsymbol{\chi}$

Theorem (Erdős, Rubin, Taylor 1980) $ch(K_{d,d}) \sim log_2 d \ (and \ ch(K_{d+1}) = d + 1)$

LIST MAKES IT "HARDER"

ch is not bounded by any function of $\boldsymbol{\chi}$

Theorem (Erdős, Rubin, Taylor 1980) $ch(K_{d,d}) \sim log_2 d (and ch(K_{d+1}) = d + 1)$

Rather, more closely related to density

Theorem (Alon 2000, cf. Saxton & Thomason 2015)

 $\mathsf{ch}(\mathsf{G}) \gtrsim \mathsf{log}_2 \, \delta$ for any G of minimum degree δ

LIST MAKES IT "HARDER"

ch is not bounded by any function of $\boldsymbol{\chi}$

Theorem (Erdős, Rubin, Taylor 1980)

 $\mathsf{ch}(\mathit{K}_{d,d}) \sim \mathsf{log}_2\,d$ (and $\mathsf{ch}(\mathit{K}_{d+1}) = d+1$)

Rather, more closely related to density

Theorem (Alon 2000, cf. Saxton & Thomason 2015)

 $\mathsf{ch}(\mathsf{G}) \gtrsim \log_2 \delta$ for any G of minimum degree δ

Still poorly understood

Conjecture (Alon & Krivelevich 1998)

 $\mathsf{ch}(G) \lesssim \mathsf{log}_2 \, \Delta$ for any bipartite G of maximum degree Δ

What if lists connected by edge are all disjoint?

What if lists connected by edge are all almost disjoint?

What if lists connected by edge are all almost disjoint, so 1 common colour?

What if lists connected by edge are all almost disjoint, so 1 common colour? Call the corresponding least ℓ separation choosability ch_{sep}

What if lists connected by edge are all almost disjoint, so 1 common colour? Call the corresponding least ℓ separation choosability ch_{sep} Theorem (Kratochvíl, Tuza, Voigt 1998) $\operatorname{ch_{sep}}(K_{d+1}) \sim \sqrt{d}$

What if lists connected by edge are all *almost* disjoint, so 1 common colour? Call the corresponding least ℓ separation choosability ch_{sep}

Theorem (Kratochvíl, Tuza, Voigt 1998)

$$\mathsf{ch}_{\mathsf{sep}}(\mathcal{K}_{d+1}) \sim \sqrt{d}$$

Theorem (Füredi, Kostochka, Kumbhat 2014) $ch_{sep}(K_{d,d}) \sim log_2 d$

What if lists connected by edge are all *almost* disjoint, so 1 common colour?

Call the corresponding least ℓ separation choosability $\mathsf{ch}_{\mathsf{sep}}$

Theorem (Kratochvíl, Tuza, Voigt 1998)

 $\mathsf{ch}_{\mathsf{sep}}(\mathcal{K}_{d+1}) \sim \sqrt{d}$

Theorem (Füredi, Kostochka, Kumbhat 2014)

 $\mathsf{ch}_{\mathsf{sep}}(K_{d,d}) \sim \mathsf{log}_2 \, d$

Theorem (Esperet, Kang, Thomassé 2019)

 $\mathsf{ch}_\mathsf{sep}(\mathsf{G}) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

What if lists connected by edge are all almost disjoint, so 1 common colour?

Call the corresponding least ℓ separation choosability ch_{sep}

Theorem (Kratochvíl, Tuza, Voigt 1998)

 $\mathsf{ch}_{\mathsf{sep}}(\mathcal{K}_{d+1}) \sim \sqrt{d}$

Theorem (Füredi, Kostochka, Kumbhat 2014)

 $\mathsf{ch}_\mathsf{sep}(K_{d,d}) \sim \mathsf{log}_2 \, d$

Theorem (Esperet, Kang, Thomassé 2019)

 $\mathsf{ch}_\mathsf{sep}(\mathsf{G}) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

Question: Does ch_{sep} grow in δ ?

Problem: Almost-disjointness of lists is not monotone under edge-addition!

Theorem (Kratochvíl, Tuza, Voigt 1998)
$$ch_{sep}(K_{d+1}) \sim \sqrt{d}$$

Theorem (Esperet, Kang, Thomassé 2019) ${\sf ch}_{\sf sep}(G) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

Question: Does ch_{sep} grow in δ ?

Theorem (Kratochvíl, Tuza, Voigt 1998)
$$\operatorname{ch}_{\operatorname{sep}}(K_{d+1}) \sim \sqrt{d}$$

Theorem (Esperet, Kang, Thomassé 2019)
$$\mathsf{ch}_\mathsf{sep}(G) = \Omega(\log \delta)$$
 for any bipartite G of minimum degree δ

Question: Does ch_{sep} grow in δ ?

Related question: Does every graph of high minimum degree contain either

- a large clique or
- a large minimum degree bipartite induced subgraph?

Conjecture (Esperet, Kang, Thomassé 2019)

Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

Without triangle-free, trivially false due to cliques

Conjecture (Esperet, Kang, Thomassé 2019)

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with d/2 rather than $C \log d$

Conjecture (Esperet, Kang, Thomassé 2019)

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with d/2 rather than $C \log d$
- If true, it is sharp up to constant factor

Conjecture (Esperet, Kang, Thomassé 2019)

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with d/2 rather than $C \log d$
- If true, it is sharp up to constant factor
- 2 rather than $\Omega(\log \delta)$ corresponds to presence of an even hole (Radovanović and Vušković '13)

Conjecture (Esperet, Kang, Thomassé 2019)

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with d/2 rather than $C \log d$
- If true, it is sharp up to constant factor
- 2 rather than $\Omega(\log \delta)$ corresponds to presence of an even hole (Radovanović and Vušković '13)
- True with "semi-bipartite" instead of bipartite

Conjecture (Esperet, Kang, Thomassé 2019)

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with d/2 rather than $C \log d$
- If true, it is sharp up to constant factor
- 2 rather than $\Omega(\log \delta)$ corresponds to presence of an even hole (Radovanović and Vušković '13)
- True with "semi-bipartite" instead of bipartite
- True with $\Omega(\frac{\log \delta}{\log \log \delta})$ (Kwan, Letzter, Sudakov, Tran 2018+)

Suppose minimum degree δ and there is a proper k-colouring

Suppose minimum degree δ and there is a proper k-colouring

Each of $\sim \frac{k^2}{2}$ pairs of colour classes induces a bipartite graph $\geq \frac{n\delta}{2}$ edges are distributed across these

By pigeonhole, one has $\gtrsim \frac{n\delta}{k^2}$ edges

Suppose minimum degree δ and there is a proper k-colouring

Each of $\sim \frac{k^2}{2}$ pairs of colour classes induces a bipartite graph $\geq \frac{n\delta}{2}$ edges are distributed across these

By pigeonhole, one has $\gtrsim \frac{n\delta}{k^2}$ edges So it has minimum degree $\Omega(\frac{\delta}{k})$ if the colouring is balanced...

Suppose minimum degree δ and there is a proper k-colouring

Each of $\sim \frac{k^2}{2}$ pairs of colour classes induces a bipartite graph $\geq \frac{n\delta}{2}$ edges are distributed across these

By pigeonhole, one has $\gtrsim \frac{n\delta}{k^2}$ edges So it has minimum degree $\Omega(\frac{\delta}{k})$ if the colouring is balanced...

Theorem (Esperet, Kang, Thomassé 2019)

Any graph with fractional chromatic number at most k and minimum degree δ has a bipartite induced subgraph of minimum degree at least $\frac{\delta}{2k}$.

Suppose minimum degree δ and there is a proper k-colouring

Each of $\sim \frac{k^2}{2}$ pairs of colour classes induces a bipartite graph $\geq \frac{n\delta}{2}$ edges are distributed across these

By pigeonhole, one has $\gtrsim \frac{n\delta}{k^2}$ edges So it has minimum degree $\Omega(\frac{\delta}{k})$ if the colouring is balanced...

Theorem (Esperet, Kang, Thomassé 2019)

Any graph with fractional chromatic number at most k and minimum degree δ has a bipartite induced subgraph of minimum degree at least $\frac{\delta}{2k}$.

Conjecture (Harris 2019)

Any triangle-free graph with degeneracy δ^* has fractional chromatic number $O(\frac{\delta^*}{\log \delta^*})$

Correspondence colouring

Imagine adversaries to colouring

- that issue arbitrary matchings specifying pairwise conflicts of colours
- between lists of size ℓ on vertices joined by an edge

What is least ℓ for which colouring is always possible? (Necessarily $\ell \geq \mathsf{ch}$)

Correspondence colouring

Imagine adversaries to colouring

- that issue arbitrary matchings specifying pairwise conflicts of colours
- between lists of size ℓ on vertices joined by an edge

What is least ℓ for which colouring is always possible? (Necessarily $\ell \geq \mathsf{ch}$)

Called correspondence chromatic number or DP-chromatic number χ_{DP}

CORRESPONDENCE COLOURING

Or rather, it is much more closely linked with density Theorem (Bernshteyn 2016, cf. Král', Pangrác, Voss 2005) $\chi_{\mathrm{DP}}(G)\gtrsim \tfrac{\delta}{2\log\delta} \ \text{for any } G \ \text{of minimum degree } \delta$

Or rather, it is much more closely linked with density

Theorem (Bernshteyn 2016, cf. Král', Pangrác, Voss 2005)

 $\chi_{\mathsf{DP}}(\mathit{G}) \gtrsim rac{\delta}{2\log\delta}$ for any G of minimum degree δ

Theorem (Bernshteyn 2019, cf. Molloy 2019)

 $\chi_{\mathsf{DP}}(\mathsf{G}) \lesssim rac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

NB: This settles correspondence version of conjecture of Alon & Krivelevich

CORRESPONDENCE AND SEPARATION

What if lists connected by edge are all almost disjoint, so 1 conflict?

A generalisation to multigraphs is natural (also for "adaptable choosability") Call the corresponding least ℓ least conflict choosability ch_{DP1}

A generalisation to multigraphs is natural (also for "adaptable choosability") Call the corresponding least ℓ least conflict choosability ch_{DP1} Theorem (Dvořák, Esperet, Kang, Ozeki 2018+) $ch_{DP1}(G) \lesssim 2\sqrt{\Delta} \ \ \text{for any (multigraph) } G \ \ \text{of maximum degree } \Delta$

NB: $\operatorname{ch}_{\mathsf{DP1}}(G) \gtrsim \sqrt{\Delta}$ for a 2-vertex G of multiplicity Δ (!)

CORRESPONDENCE AND SEPARATION

A generalisation to multigraphs is natural (also for "adaptable choosability")

Call the corresponding least ℓ least conflict choosability ch_DP1

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

 $\mathsf{ch}_\mathsf{DP1}(\mathsf{G}) \lesssim 2\sqrt{\Delta}$ for any (multigraph) G of maximum degree Δ

NB: $\mathsf{ch}_{\mathsf{DP1}}(G) \gtrsim \sqrt{\Delta}$ for a 2-vertex G of multiplicity Δ (!)

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

 $\mathsf{ch}_{\mathsf{DP1}}(\mathsf{G}) \gtrsim \sqrt{rac{\delta}{\log \delta}}$ for any G of minimum degree δ

CORRESPONDENCE AND SEPARATION

A generalisation to multigraphs is natural (also for "adaptable choosability")

Call the corresponding least ℓ least conflict choosability ch_{DP1}

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

 $\mathsf{ch}_{\mathsf{DP1}}(\mathsf{G}) \lesssim 2\sqrt{\Delta}$ for any (multigraph) G of maximum degree Δ

NB: $\mathsf{ch}_{\mathsf{DP1}}(G) \gtrsim \sqrt{\Delta}$ for a 2-vertex G of multiplicity Δ (!)

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

 $\mathsf{ch}_{\mathsf{DP1}}(\mathsf{G}) \gtrsim \sqrt{rac{\delta}{\log \delta}}$ for any G of minimum degree δ

An analogue of Heawood's Formula (roughly of form $\chi = \mathcal{O}(\sqrt{g+1})$)

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

 $\mathsf{ch}_{\mathsf{DP1}}(\mathsf{G}) = O((g+1)^{1/4}\log(g+2))$ for any simple G embeddable on a surface of Euler genus g

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

 $\mathsf{ch}_\mathsf{DP1}(\mathit{G}) \lesssim 2\sqrt{\Delta}$ for any (multigraph) G of maximum degree Δ

NB: $\mathsf{ch}_{\mathsf{DP1}}(G) \gtrsim \sqrt{\Delta}$ for a 2-vertex G of multiplicity Δ (!)

^{*}Observed in ongoing work with Kelly

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

 $\mathsf{ch}_{\mathsf{DP1}}(\mathsf{G}) \lesssim 2\sqrt{\Delta}$ for any (multigraph) G of maximum degree Δ

NB: $\mathsf{ch}_{\mathsf{DP1}}(\mathcal{G}) \gtrsim \sqrt{\Delta}$ for a 2-vertex \mathcal{G} of multiplicity Δ (!)

Theorem Redux (Dvořák, Esperet, Kang, Ozeki 2018+)

Given simple H and a vertex partition $L:[n] o {V(H) \choose \ell}$ satisfying

- $\frac{1}{\ell} \sum_{i \in L(v)} \deg(i) \leq D$ for every $v \in [n]$
- $\ell \gtrsim 4D$,

there is an independent set that is transversal to the partition L

^{*}Observed in ongoing work with Kelly

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

 $\mathsf{ch}_{\mathsf{DP1}}(\mathsf{G}) \lesssim 2\sqrt{\Delta}$ for any (multigraph) G of maximum degree Δ

NB: $\mathsf{ch}_{\mathsf{DP1}}(G) \gtrsim \sqrt{\Delta}$ for a 2-vertex G of multiplicity Δ (!)

Theorem Redux (Dvořák, Esperet, Kang, Ozeki 2018+)

Given simple H and a vertex partition $L:[n] o {V(H) \choose \ell}$ satisfying

- $\frac{1}{\ell} \sum_{i \in L(v)} \deg(i) \leq D$ for every $v \in [n]$
- $\ell \gtrsim 4D$,

there is an independent set that is transversal to the partition L

So closely related to Haxell 2001 (with instead $\deg(i) \leq D$ and 2D) and Theorem (Bollobás, Erdős, Szemerédi 1975, cf. Szabó & Tardos 2006) $\operatorname{ch}_{\mathrm{DP1}}(G) \gtrsim \sqrt{2\Delta}$ for some multigraph G of maximum degree Δ and also to List Colouring Constants...

^{*}Observed in ongoing work with Kelly

Ramsey-type graph colouring

Conjecture (Esperet, Kang, Thomassé 2019)

Ramsey-type graph colouring

Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot 2018+)

 $\chi(G) \lesssim \sqrt{\frac{2n}{\log n}}$ for any triangle-free graph G on n vertices

Ramsey-type graph colouring

Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot 2018+)

 $\chi(G) \lesssim \sqrt{\frac{2n}{\log n}}$ for any triangle-free graph G on n vertices

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot 2018+)

 $ch(G) = O(\sqrt{\frac{n}{\log n}})$ for any triangle-free graph G on n vertices